Artificial Intelligence, or AI, can be found in cars, computers, robots, and more. It’s artificial, because people created it, and it’s intelligent because it uses computer models that can learn.
Computer scientists and engineers at WHOI are using an artificial intelligence software called “Spock” that allows vehicles like Nereid Under Ice (or “NUI”) to autonomously determine areas along the seafloor to sample. (Photo by © Luis Lamar, Avatar Alliance Foundation)
Just like a person learns by experiencing something over and over again, scientists train AI models using lots and lots of data.
These are pieces of information about whatever task people want the AI to focus on.
On land, a company making a self-driving car would train its AI with millions of pictures of cars, trucks, and people. The AI learns to recognize people and vehicles—and then how to respond when it detects one. Just like a human driver, the more the AI learns, the safer it becomes when it pilots a car.
In a similar way, AI can be used to learn about the ocean, thanks to a new generation of autonomous underwater robots that are equipped with AI technology.
For example, these AI-driven robots can help study marine life. Most marine biologists study ocean animals while diving. This allows people to follow individual animals, watch different species interact, and see how animals use their habitat. But when a person is swimming in the sea, their presence may alarm the animals they are trying to observe. Animals may behave differently. They may hide or dive too far down for a person to follow. They may behave one way during the day and another at night when people can’t easily watch. One way around this is to tag animals, so they can be tracked from a boat. But tagging comes with its own challenges. Autonomous robots can address both of these issues.
WHOI scientists are developing AI-driven robots to learn about the ocean in new ways. One example is CUREE, a curious robot about the size of a large suitcase. Scientists have trained CUREE to identify fish, jellyfish, and other animals that live in coral reefs. When an interesting animal shows up on CUREE’s cameras, the researcher tells CUREE to follow it. Then the robot tracks the animal on its own. The idea is to eventually have many of these small robots in the ocean to help marine biologists understand how coral reefs and other ecosystems function.